
A toad's	guide	to	using	Scrivener	–	MultiMarkDown	–	Latex

Huw	Evans

January	26, 2012

i

ii

Formatted	for	LATEX
by	MultiMarkdown

Contents

Contents iii

1 To	begin 1
1.1 Acknowledgements . 1
1.2 Why	would	you? . 1
1.3 An	overview	of	the	ScML workflow. 2

2 Setting	things	up 3
2.1 Scrivener . 3
2.2 MultiMarkdown . 3
2.3 Latex . 3

3 Writing	(Scrivener) 4
3.1 The	small	stuff . 4
3.2 Document	structure . 6
3.3 Cross-references . 7
3.4 Links . 8
3.5 Footnotes . 9
3.6 Tables . 9
3.7 Images	or	figures . 11
3.8 Maths . 12
3.9 Bits	of	Latex . 13
3.10 Something's	missing . 13
3.11 Making	life	easier . 13

4 Compiling	(Scrivener	and	MultiMarkdown) 14
4.1 Compile	options . 14
4.2 Pressing	the	button . 17
4.3 Where'd	it	go? . 17

5 Typesetting	(TexShop) 19
5.1 A bit	about	Latex . 19
5.2 Setting	up	for	typesetting . 20
5.3 Those	other	files . 20
5.4 Packages . 20
5.5 Other	choices . 21
5.6 Compile	and	typeset	woes . 21

6 Extras 22

iii

Chapter	1

To	begin

This	document	is	intended	as	an	introductory	guide	to	producing	PDF documents	using	the	Scrivener
2.2	for	Mac, MultiMarkdown	3.x1 and	Latex	workflow	(hereafter	ScML).	All	three	of	those	programs
have	manuals	and	guides, this	document	describes	how	to	get	them	to	work	together, so	you	can	get
on	with	your	writing.
The	guide	comes	out	of	my	experience	over	the	last	few	years, and	the	frustrations	–	and	joys	–	of

using	the	ScML workflow	to	produce	good-looking	PDFs. Some	of	those	frustrations	were	my	own
fault	 (a	 few	too	embarrassing	 to	even	discuss), but	others	stem	from	the	 fact	 that	getting	 the	ScML
workflow	right	means	getting	three	separate	systems	to	line	up	at	program	level	and	syntax	level. As	a
non-programmer	it	felt	at	times	as	if	I was	setting	up	a Honda	advert2.
I hope	this	guide	will	help	a	few	people	get	past	those	initial	hiccups	so	they	can	experience	the

benefits	of	the	ScML workflow	for	themselves.
But	where	does	the	toad	come	into	it? There's	a	proverb, put	this	way	by	Rudyard	Kipling:

The	toad	beneath	the	harrow	knows

Exactly	where	each	tooth-point	goes;

I am	writing	as	one	toad	(user)	to	other	toads	to	help	them	get	past	some	of	the	spikes	(problems).

1.1 Acknowledgements

But	before	we	plunge	in, there	are	a	few without	whoms:

• Keith	(not	Kevin)	Blount	the	creator	and	coder	of	Scrivener, the	best	writing	tool	this	planet	has
yet	seen.

• Fletcher	Penney	the	creator	of	MultiMarkdown.

• The	contributors	 to	 the	 Scrivener	MultiMarkdown	 forum	whose	 knowledge	 and	advice	have
helped	me	avoid	several	spikes.

1.2 Why	would	you?

Latex	turns	out	lovely-looking	documents. But	writing	an	input	tex	file	by	hand	is	a	real	pain. It's	the
sort	of	experience	that	drives	people	to	use	word	processors	where	they	can	click	one	button	to	turn
a	word	bold. (And	look, by	jingo, it	even	goes	bold	on	screen!)

1There	was	a	big	change	in	MultiMarkdown	between	versions	2	and	3. The	instructions	in	the	rest	of	this	document	won't
work	with	version	2.

2http://www.youtube.com/watch?v=_ve4M4UsJQo

1

http://www.youtube.com/watch?v=_ve4M4UsJQo
http://www.youtube.com/watch?v=_ve4M4UsJQo

CHAPTER	1. TO BEGIN 2

Scrivener	is	designed	to	let	writers	write	without	worrying	about	fonts, layouts	and	all	the	other	stuff
until	the	writing	is	done.
Wouldn't	it	be	great	if	there	was	a	way	of	getting	your	writing	done	in	Scrivener	then	being	able	to

use	all	the	text	processing	power	of	Latex	without	having	to	shovel	lots	of	code?
That's	where	MultiMarkdown	comes	in. You	could	think	of	it	as	glue	which	holds	Scrivener	and

Latex	together, or	–	more	helpfully	–	as	a	wonderful	piece	of	plumbing	which	lets	your	words	flow
from	Scrivener	to	Latex. (So	when	you	open	your	brain	tap	…	No, that's	taking	a	metaphor	too	far.)
The	Scrivener	–	MultiMarkDown	–	Latex	workflow	(plumbing	again)	minimises	distractions	while

you	write	and	lets	you	get	well-laid	out	documents	at	the	end. It	takes	a	bit	of	setting	up, as	there	are
three	programs	to	install	and	configure	properly, but	the	end	result	makes	it	worth	the	effort.
The	rest	of	this	guide	takes	you	briefly	through	the	installation	of	the	software, then	looks	at	the	three

stages	of:

• writing;

• compiling;

• typesetting

But	first, we	need	to	grasp	the	ScML workflow	as	a	whole.

1.3 An	overview	of	the	ScML workflow.

Before	we	plunge	into	the	detail	we	need	to	take	an	overview	of	the	workflow. But	before	we	do	that
we	need	to	make	one	other	thing	clear:

MultiMarkdown	refers	to	both	a	set	of	markup	syntax and a	program	which	processes	text
containing	that	syntax.

I'll	try	to	make	clear	which	MultiMarkdown	I'm	referring	to	at	any	one	points.
So, the	workflow	goes:

1. Write	text	in	Scrivener, using	most	of	its	wonders	(but not the	automatic	section	numbering).

2. Markup	the	text	with	MultiMarkdown	syntax	and, if	you	need	it, embedded	Latex	syntax.

3. Compile	the	text	in	Scrivener	and	process	through	MultiMarkdown	to	get	a	tex	file.

4. Open	the	tex	file	in	TexShop	and	typeset	to	create	a	PDF.

Of	course, there'll	be	something	wrong	somewhere	so	you'll	go	round	the	loop	a	couple	of	times,
but	at	the	end	you'll	still	get	that	PDF.	(You	can	also	send	the	working	tex	file	to	a	journal	if	you're	an
academic).

Chapter	2

Setting	things	up

To	get	ScML working	you	need	the	three	programs	installed	on	your	Mac.

2.1 Scrivener

You've	probably	already	installed	Scrivener	–	if	you	haven't, download	it1 and	give	it	a	go: there's	a
very	generous	thirty	(non-consecutive)	day	trial	period.

2.2 MultiMarkdown

When	it	comes	to	setting	up	MultiMarkdown	there's	the	easy	way	or	the	hard	way. If	you	want	to	go
the	hard	way, fine, the	MultiMarkdown	manual	is	there	for	you. But	I'm	going	the	easy	way: download
the	latest	version	of	the MultiMarkdown-Mac	installer2 and	run	the	installer.
Because	we're	running	MultiMarkdown	through	Scrivener	there	are	a	couple	of	extra	things	we	need

to	install:

1. Download	and	run	the MultiMarkdown-Support-Mac	installer3

2. Download	the LaTeX support	files4 and	place	them	in	˜/Library/texmf/tex/latex/mmd.

The	Latex	support	files	are	tex	files	which	MultiMarkdown	uses	to	create	complete	tex	files	during
typesetting. We'll	cover	the	use	of	those	support	files	in	more	detail	in section 4.1 and section 5.3.

2.3 Latex

There	are	approximately	five	hundred	million	ways	of	installing	Latex5 on	a	Mac. I only	know	one:
MacTex6. That	gives	you	a	Tex	engine	for	typesetting	and	the	TexShop	front	end	for	fiddling	on.
Once	you	have	the	basic	Latex	installation	you	will	inevitably	start	to	customise	it	by	adding	new

packages which	allow	you	 to	make	 the	output	 even	more	 lovely. We	will	 talk	more	about	 Latex
packages	in section 5.4.

1http://www.literatureandlatte.com
2http://github.com/fletcher/peg-multimarkdown/downloads
3http://github.com/fletcher/peg-multimarkdown/downloads
4https://github.com/fletcher/peg-multimarkdown-latex-support
5I really	don't	want	to	get	tangled	in	a	terminology	thing, so	I'll	 refer	 to	Latex	as	 the	code	and	Tex	and	TexShop	as	 the

software. The	files	we	work	with	have	the	.tex	extension	so	we'll	call	those	tex	files.
6http://www.tug.org/mactex/2011/

3

http://www.literatureandlatte.com
http://github.com/fletcher/peg-multimarkdown/downloads
http://github.com/fletcher/peg-multimarkdown/downloads
https://github.com/fletcher/peg-multimarkdown-latex-support
http://www.tug.org/mactex/2011/
http://www.literatureandlatte.com
http://github.com/fletcher/peg-multimarkdown/downloads
http://github.com/fletcher/peg-multimarkdown/downloads
https://github.com/fletcher/peg-multimarkdown-latex-support
http://www.tug.org/mactex/2011/

Chapter	3

Writing	(Scrivener)

You	already	know	about	writing, so	this	section	isn't	written	to	nag	you	about	split	infinitives	and	the
subjunctive, instead	it's	designed	to	help	you	maximise	the	time	you	spend	in	Scrivener	and	minimise
the	time	spent	wrestling	with	Latex.

3.1 The	small	stuff

This	section	covers	the	paragraph	level	syntax	for	MultiMarkdown.

Paragraphs

Latex	recognises	a	new	paragraph	by	a	blank	line	with	two	returns: it	seems	to	think	one	return	is	just
dithering. So	when	you	are	writing	in	Scrivener	make	sure	you	give	that	extra	press	of	the	return	key.

Emphasis

Or	–	bold	and	italics. Which	is	how	we	non-semantic	coding	people	think	of	it.
To	turn	text bold just	put	two	asterisks	before	and	after	the	text, like	this **bold**. Be	careful	not

to	leave	a	space	between	the	asterisks	and	the	first	or	last	letter	of	the	text, otherwise	you'll	end	up
with	asterisks	liberally	scattered	around	your	words.
To	 turn	 text italic just	put	one	asterisk	before	and	after	 the	 text, like	 this *italic*. The	same

warning	on	spacing	applies.

Bullets	and	lists

Easy. For	bulleted	lists	start	the	each	paragraph	with	a + and	a	space. That's	it. Dashes	will	do	the	job
just	as	well:

- first bullet

- second bullet

- third bullet

gives

• first	bullet

• second	bullet

4

CHAPTER	3. WRITING (SCRIVENER) 5

• third	bullet

For	numbered	lists, start	each	paragraph	with 1. You	can	use	other	numbers	if	you	want, but	there's
no	need	to	worry	about	keeping	the	numbers	in	order. ScML will	do	that	for	you:

1. First important point

1. Second important point

1. Third important point

gives:

1. First	important	point

2. First	important	point

3. First	important	point

We	can	also	have	sub-indents	by	tabbing, like	this:

1. First point

+ sub-bullet

+ another sub-bullet

1. Second point

Which	becomes:

1. First	point

• sub-bullet

• another	sub-bullet

2. Second	point

We	can	also	have	other	paragraphs	at	the	same	indent	as	a	bullet	or	list, by	starting	the	paragraph
with	a	tab. Like	this:

+ first bullet

linked paragraph

+ second bullet

Which	gives:

• first	bullet

linked	paragraph

• second	bullet

CHAPTER	3. WRITING (SCRIVENER) 6

Quotes	`n'	stuff

To	get	a	block	quote	start	the	paragraph	with	a >:

>Someone else's interesting thought

To	get	something	like:

A man	ceases	to	be	a	beginner	in	any	given	science	and	becomes	a	master	in	that	science
when	he	has	learned	that this	expected	reversal	is	never	going	to	happen and	that	he	is
going	to	be	a	beginner	all	his	life.

R.	G.	Collingwood. The	New	Leviathan: 1.46.

Code	blocks	start	with	a	tab. Small	pieces	of	code	can	be	shown	with	backquotes	`.
MultiMarkdown	special	characters	can	be	escaped	with	a	backslash:

This is how I get the backquote \` to show up on the page.

3.2 Document	structure

Most	long	documents	have	a	formal	structure	of	chapters	or	sections	with	sub-chapters, sub-sections,
sub-sub-sections	and	so	on. In	technical	documents	those	divisions	will	usually	be	numbered. Using
numbered	divisions:

• helps	the	reader	understand	the	flow	of	the	document;

• makes	cross-referencing	easier	by	linking	to	structure	not	pages.

But	developing	and	maintaining	structure	and	numbered	divisions	is	a	pain, particularly	as	a	docu-
ment	changes	structure	during	the	writing	process1.
ScML overcomes	this	by	using	the	structure	of	the	Binder	in	the	Scrivener	project	as	the	structure	of

your	document. So, in	this	project, the	Binder	document	titled	`Writing	in	Scrivener'	becomes	a	top
level	division, `The	small	stuff', which	is	nested	in	it	becomes	a	second	level	section	and	`Emphasis'
which	is	nested	in	that	becomes	a	third	level	section. Figure 3.1 makes	that	point	visually.
And	that's	it. All	you	have	to	do	is	make	sure	the	structure	in	the	Binder	is	right.
Now	comes	the	magic	of	ScML:	the	titles	of	those	documents	become	the	numbered	divisions	in

the	final	document. The	pain	of	remembering	if	a	section	should	be	5.1.2	or	5.2.2	disappears, as	does
the	pain	of	renumbering	everything	if	you	put	a	new	section	in2.

Headings	from	scratch

Just	so	you	know, if	you	were	to	be	writing	a	MultiMarkdown	document	from	scratch, the	document
structure	is	built	up	using	headers, which	are	marked	by	hashes	to	front	and	back:

#Heading#

One	hash	gives	a	top-level	heading, two	hashes	a	second	level	heading, and	so	on. If	you	look	in
the	Scrivener	project	you'll	see	that	the	heading	of	this	particular	section	isn't	a	separate	document	in
the	binder.

1If	it	doesn't	then	you're	doing	it	wrong, or	you	are	working	to	someone	else's	restrictive	structure	(most	journals).
2If	you	look	carefully	at Figure 3.1 you'll	see	that	the	order	of	documents	in	the	image	doesn't	match	the	order	of	this	final

document. What	did	I have	to	do	to	update	the	numbering	once	I'd	changed	the	order? Nothing	–	I just	compiled	it	again.

CHAPTER	3. WRITING (SCRIVENER) 7

Figure 3.1: From	the	Binder	to	the	Numbered	sections

3.3 Cross-references

`That's	all	very	well, but	if	the	division	numbers	don't	appear	until	the	final	PDF how	can	I make	cross
references?'
Well	now, this	is	where	MMD comes	into	its	own.
The	basic	syntax	of	a	cross-reference	to	another	section	of	a	document	is, according	the	the	MMD

manual, two	sets	of	square	brackets	with	the	title	of	the	linked-to	section	inside	the	first	set	of	brackets,
like	this:

[Document Title][]

So:

[Emphasis][] describes how to get italics.

Gives:

Emphasis	(section 3.1)	describes	how	to	get	italics.

While:

[Bullets and lists][] describes lists.

Gives:

CHAPTER	3. WRITING (SCRIVENER) 8

Bullets	and	lists	(section 3.1)	describes	lists.

In	those	examples	you'll	see	the	reference	number	comes	out	to	the	same	section	(3.1	when	I last
ran	 this): that's	because, by	default, Latex	 is	only	numbering	chapters	 and	 sections. If	 I adjusted
the	numbering	 level	 to	go	down	 to	 subsections	 then	 those	 two	examples	would	 indicate	different
subsections.
Another	issue	with	that	basic	link	syntax	is	that	it	shows	the	name, division	type	and	division	number

in	the	text. Usually, I don't	want	that, I just	want	the	division	number	in	my	text	so	it	reads	`have	a
look	at	x.x	to	understand	that'. To	get	round	that	I always	use:

[](#documenttitle)

(that's	 a	pair	of	 square	brackets, opening	bracket, hash	 sign	 –	Alt+3	on	my	UK keyboard	–	 the
Scrivener	document	title	in	lower	case	with	spaces	stripped	out, and	a	closing	bracket). So:

When compiling (see [](#compiling)), be very alert.

Will	produce:

When	compiling	(see chapter 4)	be	very	alert.

The	same	basic	syntax	works	for	links	to	figures	and	tables.
If	 you	 have	 several	 sections	 with	 identical	 titles, which	 can	 happen	 if	 every	 chapter	 needs	 an

overview	and	a	summary, how	can	you	make	sure	you	are	referring	to	the	right	one?
There's	a	trick	for	that. In	the	Binder	you	can	add	a	unique	identification	tag	after	the	proper	title:

Contents [Contents Overview]

You	can	then	cross-refer	to [](#contentsoverview), as	in:
That's all explained totally clearly in [](#contentsoverview).

To	get:

That's	all	explained	totally	clearly	in section 4.1.

3.4 Links

It	shouldn't	be	a	surprise	to	find	the	syntax	for	links	is	closely	related	to	that	for	cross-references. We
mark	the	link	in	the	text	with [LinkName][] and	put	the	content	in	a	separate	paragraph:

[LinkName]: http://www.evilcorporation.com

So, if	we	wanted	a	link	to	the	Scrivener	web	site	we'd	have:

Download Scrivener from [LandLSite][]

[LandLSite]: http://www.literatureandlatte.com

Which	in	real	life	gives:

CHAPTER	3. WRITING (SCRIVENER) 9

Download	Scrivener	from LandLSite3

This	basic	format	uses	the [LinkName] in	the	text, which	looks	a	bit	odd. We	can	make	it	read
better	by	shifting	the	label	to	the	second	set	of	brackets	and	adding	a	title	in	the	first:

Don't forget to use the [Scrivener forums][ScrivForum]

[ScrivForum]: http://www.literatureandlatte.com/forum

Which	looks	like:

Don't	forget	to	use	the Scrivener	forums4

The	syntax	allows	attributes	to	be	added	to	links	as	attribute=value	or	attribute=``multi	word	value''
pairs	after	the	link	address. However, that	doesn't	seem	to	do	anything	for	ScML,	so	I wouldn't	bother.

3.5 Footnotes

All	good	documents	need	footnotes	–	and	technical	documents	more	than	most5. Footnotes	in	Multi-
Markdown	are	similar	to	links, with	an	anchor	in	the	text	which	looks	like	this: [ˆMyFirstFootnote]
And	the	footnote	content, which	is	a	separate	paragraph	starting	with	the	anchor	text	plus	a	colon:

[^MyFirstFootnote]: I am so proud of this footnote.

Exactly	where	you	put	the	footnote	content	in	your	Scrivener	document	is	up	to	you. I have	generally
put	the	footnote	text	at	the	bottom	of	the	Scrivener	document	which	references	it, so	as	not	to	interrupt
the	flow	of	the	paragraphs	on	screen. However, I am	now	starting	to	put	it	immediately	below	the
anchored	paragraph: the	ease	with	which	Scrivener	allows	me	to	split	documents	means	I often	end
up	with	the	footnote	text	two	documents	away	from	its	anchor. That	doesn't	stop	it	working, but	it
does	mean	I lose	track	of	the	footnote.

3.6 Tables

MultiMarkdown	tables	are	simple: there	are	no	pretty	boxes, just	the	content	of	the	table, set	out	in
rows, with	the	cells	separated	by	pipe	characters: |. The	only	tricky	bit	is	that	we	need	to	add	a	head-
body	division	line	using	dashes	between	the	pipes. We	can	also	give	the	table	a	caption	in	square
brackets	underneath	the	last	row:

A header cell	The next header cell
First cell	Second cell
[My first table]

This	becomes:
The	pipes	don't	have	to	line	up, but	it	can	be	easier	to	use	tabs	to	line	them	up	to	make	the	table

easier	to	read	while	you	are	putting	it	together6.
We	can	use	the	title	in	our	references, [My first table][] or [](#myfirsttable) to	get:

3http://www.literatureandlatte.com
4http://www.literatureandlatte.com/forum
5Because	that's	where	the	jokes	go.
6The	table	code	doesn't	have	to	be	laid	out	as	tidily	as	the	examples	here, I've	just	done	that	to	make	it	easier	to	read.

http://www.literatureandlatte.com
http://www.literatureandlatte.com/forum
http://www.literatureandlatte.com
http://www.literatureandlatte.com/forum

CHAPTER	3. WRITING (SCRIVENER) 10

Table 3.1: My	first	table

A header	cell The	next	header	cell

First	cell	second	line Second	cell	second	line

see	My	first	table	(Table 3.1)	or, my	preferred	option:

see Table 3.1

We	can	define	the	head-body	division	lines	using	a	special	row	which	has	dashes	between	pipes,
and	colons	to	control	the	orientation	of	the	cell	content	for	each	column. A colon	at	the	left	gives	left
alignment, at	the	right	gives	right	alignment; two	colons	give	centre	alignment.
We	can	merge	cells	by	sitting	the	pipes	together, so	this	(which	is	borrowed	directly	from	Fletcher

Penney's	MultiMarkdown	guide):

[The caption of the table][TableLabel]
| |Grouping ||
First Header	Second Header	Third Header
Content |*Long Cell* ||
Content |Cell | Cell |

New section |More | Data |
And more |And more ||

Gives	this:

Table 3.2: The	caption	of	the	table

Grouping
First	Header Second	Header Third	Header

Content Long	Cell
Content Cell Cell

New	section More Data
And	more And	more

A few	things	to	note	there:

• the	blank	row	in	the	table	triggers	a	new	horizontal	rule.

• we	can	manage	without	the	first	pipes	on	all	except	the	first	row	of	the	table.

• the	caption	can	go	above	or	below	the	table

• we	can	add	a	label	alongside	the	caption, wrapped	in	its	own	set	of	square	brackets. The	label
is	then	used	in	cross-referencing, allowing	us	to	have	longer	and	more	descriptive	titles.

In	my	view	It's	better	to	use	the [](#tablelabel) cross-reference	syntax	which	gives:

See Table 3.2.

CHAPTER	3. WRITING (SCRIVENER) 11

Using	the [TableLabel][] syntax	gives	strange	results.
The	main	limits	of	the	MultiMarkdown	table	is	that	it	only	manages	cells	with	the	content	on	a	single

line: if	you	want	anything	more	complicated	you	will	have	to	build	it	yourself.
If	a	table	doesn't	work	at	all	check	the	Corrections	tab	of	the	Scrivener	preferences	and	see	if	the

substitution replace	double	hyphens	with	em-dashes is	ticked. If	it	is	ticked	then	the	substitution	results
in	em-dashes	in	the	header-table	division	row, which	MultiMarkdown	then	can't	recognise.

3.7 Images	or	figures

There	are	two	parts	to	including	images	into	finished	Latex	pdfs:

• adding	the	references	to	include	them;

• getting	the	image	file	to	the	right	place	for	TexShop	to	find	it	during	typesetting.

We	handle	the	first	with	MultiMarkdown	syntax, the	second	using	Scrivener	links.
MultiMarkdown	uses	a	two-part	syntax	for	images. First	there	is	the	anchor	in	the	text:

![The image caption][TheImageLabel]

That	has	two	parts, the	caption	and	the	label, each	in	square	brackets, with	and	exclamation	mark
to	start. Elsewhere, in	a	separate	paragraph, we	put	the	details	of	the	image	file, like	this:

[TheImageLabel]: ImageFileName.png width=999px

The	key	parts	are	the	label, followed	by	a	colon, then	the	name	of	the	file with	the	extension and
finally	an	attribute, which	in	this	example	sets	the	size	of	the	image	in	pixels7.
So:

![A grumpy badger][Grumpy]

[Grumpy]: Grumpy.png width=200px

Brings	the	image	into	the	text	–	you'll	see	it	somewhere	on	the	page	(I can't	tell	you	exactly	where,
because	Latex	will	do	the	layout	for	me). Of	course, if	you	want	to	see	the	actual	link	which	is	used
you	will	have	to	look	at	the	Scrivener	file	which	contains	the	source	text.
Once	the	image	is	set	up, we	can	reference	it	in	the	usual	way:

See [](#grumpy) for an example image.

which	gives

See Figure 3.2 for	an	example	of	an	included	image.

That	deals	with	the	first	part	of	the	business, making	the	image	reference	for	Latex. For	the	second
part, making	sure	the	image	file	is	in	the	right	place, we	use	Scrivener's	linking	system:

1. Import	the	image	into	the	Research	folder. You	can	organise	them	in	sub-folders	if	there	are	a	lot
of	them. Note	that	Scrivener	will	hide	the	extension	in	the	Binder	list.

7There	are	variations	on	this	format, and	the	MultiMarkdown	manual	also	contains	an	in-line	format	which	some	people
may	prefer. Personally, the	non-in-line	format	works	better	for	me	and	keeps	the	text	paragraphs	uncluttered.

CHAPTER	3. WRITING (SCRIVENER) 12

Figure 3.2: A grumpy	badger

2. Once	you've	added	the	image	text, select	the	file	name	(including	the	extension8)	and	right	click.

3. Select Scrivener	link and	drill	down	until	you	get	to	pick	the	image	you	want. The	file	name	will
now	be	underlined	to	show	a	link, and	coloured	to	your	link	colour	(mine's	currently	orange).

4. When	you	compile	the	document	Scrivener	will	export	all	linked	files	into	a	folder	alongside	the
tex	document, so	they	are	all	at	hand	for	typesetting.

3.8 Maths

MultiMarkdown	maths	is	Latex	maths. The	only	difference	is	an	extra \ in	the	beginning	and	ending
codes	for	the	mathematical	expression.
In	line	maths	expressions	start	with \\(and	end	with \\) like	this:

We can calculate the resistance, \\(R_g\\), from the thickness.

Which	becomes:

We	can	calculate	the	resistance, Rg, from	the	thickness.

Normal	maths	expressions	(if	that's	the	right	term)	starts	with \\[and	end	with \\]. In	my	experi-
ence	I've	found	that	it	only	works	if	there	is	a	space	between	the	beginning	and	ending	tags	and	the
expressions:

\\[h_r = Eh_{r0} \\]

which	becomes:

hr = Ehr0

The	only	other	thing	worth	saying	about	maths	expressions	is	that	if	you	get	weary	of	untangling
complicated	expressions	(and	your	idea	of	complicated	may	be	much	further	down	the	line	than	mine)
then	MathType	from	Design	Science	is	a	great	visual	tool	for	building	expressions, which	can	then	be
pasted	as	Latex	code	into	Scrivener. You	don't	think	I'd	do	this	by	hand?

8Back	in	the	day, before	MMD 3, there	was	no	need	to	add	the	extension: and	once	Scrivener	is	updated	to	play	nicely
with	MMD 3	I hope	that	will	be	the	case	again.

CHAPTER	3. WRITING (SCRIVENER) 13

hr =
hr0

1
ε1

+ 1
ε2

− 2 + 2(
1+

√
1+d2/b2−d/b

)
3.9 Bits	of	Latex

There	will	come	a	point	where	you	need	more	Latex	than	ScML can	give	you. When	you	get	to	that
point	you	can	throw	in	as	much	Latex	you	want, provided	you	enclose	it	with	HTML comments, <!--
to	open	and --> to	close. Typically	I use	that	to	enter	SI units	using	the	SIUnitx	package9:

The area exceeds <!--\SI{1200}{mm^{2}/m}-->

Produces:

The	area	exceeds 1200mm2/m

You	could	also	use	it	if	there	is	a	table	you	have	massaged	in	Latex: then	you	could	paste	the	raw
Latex	for	the	table	into	your	Scrivener	document	and	wrap	it	up	with	comments: MMD will	pass	it
through	undigested. (An	alternative	solution	would	be	to	save	the	table	in	a	tex	file	of	its	own	and	use
the	Latex	input	command	in	Scrivener	–	commented	out	of	sight	–	to	link	to	the	file. It	would	then	get
brought	in	as	you	typeset	the	final	Latex. The	only	downside	is	that	you	would	have	to	make	sure	you
moved	the	file	into	the	right	folder	every	time	you	recompiled	from	Scrivener.)

3.10 Something's	missing

ScML does	support	bibliographies	using	Bibtex. Unfortunately	I know	nothing	about	that. There	is
some	information	about	bibliographies	in	the	MultiMarkdown	manual.
If	you're	reading	this	and	you	know	how	to	integrate	Bibtex	into	ScML workflow	and	your	willing

either	to	write	some	straightforward	instructions	or	give	me	enough	information	so	I can	expand	this
section	please	get	in	touch.

3.11 Making	life	easier

Two	tips	for	making	the	writing	part	easier:

• In	my	Scrivener	projects	I have	a	Project	Notes	file	which	contains	my	MultiMarkdown	cheat
sheet. It's	got	link	syntax, table	syntax, lots	of	SI units	and	a	few	bits	of	HTML for	when	I need
that. As	I usually	work	with	the	Inspector	open	it	only	takes	me	a	few	seconds	to	remind	myself
of	a	half-forgotten	piece	of	syntax.

• MultiMarkdown	Composer	(see chapter 6)	is	an	application	produced	by Fletcher	Penney10 the
father	of	MultiMarkdown. It's	a	stand-alone	editor	specifically	designed	for	use	with	MultiMark-
down. It	knows	all	the	tags	and	has	a	preview	mode	for	seeing	what	the	processed	text	will	look
like. Whilst	you	can	write	whole	documents	in	it, my	main	use	for	it	is	to	paste	in	troublesome
bits	of	code	and	work	on	them	until	they	make	sense. I also	write	more	complex	tables	in	it,
as	MultiMarkdown	Composer	keeps	the	columns	nicely	aligned. When	I'm	done	I simply	paste
the	text	back	into	Scrivener.

9Of	course, I have	to	make	sure	that	I've	adjusted	my	mmd-latex	files	to	declare	the	package, see section 5.4.
10http://fletcherpenney.net/

http://fletcherpenney.net/
http://fletcherpenney.net/

Chapter	4

Compiling	(Scrivener	and	MultiMarkdown)

You've	written	your	document	and	it's	finished, or	it's	time	to	get	a	draft	out	to	your	supervisor, col-
league	or	editor. In	Scrivener	terminology	it's	time	to	compile	the	document	and, with	the	help	of
MultiMarkDown, turn	it	into	a	tex	document	which	you	can	then	use	in	TexShop.

4.1 Compile	options

Start	the	compile	process	by	selecting File>Compile. When	the Compile dialogue	opens	go	straight
to	the Compile	for drop-down	at	the	bottom. Select MultiMarkdown	–	Latex. That	will	change	the	list
of Compilation	options on	the	left	to	show	only	the	ones	relevant	for	that	compilation	route. Now	we
can	look	at	each	of	those	options1 in	turn	to	see	what	can	be	adjusted.

Contents

The Contents pane	lets	us	to	choose	which	documents	of	our	draft	text	to	include	in	the	compile. The
folder	drop-down	lets	you	view	the	contents	of	folders, or	you	can	view	the	whole	draft. You	then
click	the	tick	box	to	select	a	file, or	opt-click	a	box	to	select	all	the	files	in	a	folder. As	we're	compiling
through	MultiMarkdown	we	can	ignore	the	`As	is'	and	`Page	break	before'	boxes	–	they	do	nothing
for	us.
Before	you	leave	the Contents option	make	sure	the	folder	drop-down	is	set	to	the	highest	level	you

want	to	compile	(which	will	usually	theDraft folder); if	it	isn't, you'll	only	get	the	contents	of	the	folder
which	is	selected.

Separators

At	last, an	easy	one. In	the Separators pane	set	all	of	the	options	to Empty	line.

Formatting

When	compiling	to	MultiMarkdown	we	use	the	formatting	pane	(Figure 4.1 to	select	the	document
levels	we	want	to	include	in	the	compile. For	each	of	the	levels	in	the	binder	we	need	to	make	sure
the Title and Text boxes	are	both	ticked.
If	Level	1	or	lower	aren't	showing	just	click	the	plus	button	(marked	in	red	on Figure 4.1)	to	add	all

the	levels	you	need.
The Level	settings should	just	show # Title # with Main text below. There's	nothing	to	change

there.

1Chapter	23	of	the	Scrivener	manual	covers	compilation	in	detail: we're	just	looking	at	the	important	options	for	ScML.

14

CHAPTER	4. COMPILING (SCRIVENER AND MULTIMARKDOWN) 15

Figure 4.1: The	formatting	pane

Layout

Nothing	to	see	here, move	along	there.

Transformations

The Transformations pane	controls	a	few	document	wide	changes, such	as	changing	all	smart	quotes
to	straight	quotes. Pick	the	ones	you	need.

Replacements

The Replacements pane	is	potentially	a	very	powerful	tool	for	ScML.	You	can	use	it	to	set	up	replace-
ments	of	words	or	characters	which	take	place	during	compile. I haven't	done	much	with	it	yet, but	I
can	see	possibilities	for	simplifying	the	markup	in	Scrivener.
For	example, pasting	an	equation	from	MathType	gives	the	standard	Latex	syntax: \[equation\],

while	MultiMarkdown	needs	double	backslashes	 (and	 that	extra	space): \\[equation \\]. If
you	only	ever	wanted	to	use	the	standard	Latex	maths	delimiters	when	writing	you	could	set	up	two
replacements:

\[to \\[

\] to \\]

When	you	compiled	that	would	add	the	extra \ without	you	having	to	worry	about	it.
Note	that	you	can	have	both	project	and	preset	replacements:

• project	replacements	apply	to	any	compile	from	the	project;

• preset	replacements	apply	only	to	compilations	using	a	named	compiled	preset	of	compilation
options	(see	section	23.4.1	of	the	Scrivener	manual	for	a	discussion	of	compile	presets).

Preset	replacements	enable	you	to	apply	different	sets	of	replacements	 for	compiles	of	 the	same
document: you	might	use	one	set	if	compiling	to	MultiMarkdown	and	a	different	set	for	compiling	to
HTML or	.mobi.

CHAPTER	4. COMPILING (SCRIVENER AND MULTIMARKDOWN) 16

Statistics

Another	one	ignore.

Footnotes

If	you	need	to	stop	comments, annotations	and	footnotes	going	through	to	the	compile	do	that	here.

Meta-Data

Metadata	is	the	key	to	managing	MultiMarkdown. If	you're	doing	MultiMarkdown	by	hand	you	need
to	have	a	metadata	section	in	your	document, but	in	Scrivener	we	can	put	all	our	metadata	in	this
Compile	option	pane	(Figure 4.2).

Figure 4.2: The	Metadata	compile	pane

The	main	pieces	of	metadata	are:

• Latex	input: specifies	a	tex	file	which	will	be	used	during	typesetting	using	a	latex \input{}
command. These	files	contain	the	Latex	commands	for	document	layout	and	typesetting	options.

• Author: your	name	goes	here.

• Title: your	document	name	goes	here.

• Base	header	level: Latex	has	a	fixed	order	of	headers, from	Part, which	is	level	one, through
Chapter	(level	two), section, sub-section, sub-sub-section. This	setting	determines	how	the	high-
est	level	of	your	document	will	be	treated.

I've	set	my	base	header	level	to	two, so	the	highest	division	I get	is	chapter	(with	no	parts). If	I'd
set	the	base	header	level	to	one	then	what	is	currently	Chapter	4	Compiling	would	be	Part	IV
Compiling.

CHAPTER	4. COMPILING (SCRIVENER AND MULTIMARKDOWN) 17

• Latex	mode: MultiMarkdown	can	use	two	Latex	classes	(document	types), memoir	or	beamer.
Memoir	is	for	page	layout	PDF documents, beamer	for	presentations.

• Latex	footer: a	special	case	of	the	Latex	input. This	file	is	called	at	the	end	of	the	tex	document
during	typesetting. It	handles	end	matter	like	glossaries	and	bibliographies.

The	metadata	settings	for	this	document	are	shown	in Table 4.1. You'll	see	there	are	two	Latex	input
entries, one	for	mmd-memoir-header	which	comes	before	the	Author, Title	and	Base	header	level, and
one	which	comes	after. That	order	is	important	for	proper	processing.

Table 4.1: Metadata	for	the	toad's	guide

Metadata Values

Latex	input mmd-memoir-header
Title A toad's	guide	to	using	Scrivener	–	MultiMarkDown	–	Latex
Author Huw	Evans
Base	Header	Level 2
Latex	mode memoir
Latex	input mmd-memoir-begin-doc
Latex	footer mmd-memoir-footer

In	Scrivener	we	add	metadata	items	by	clicking	the	plus	button, then	editing	the	title	in	the	list	and
entering	the	content	in	the	text	box. We	can	re-order	the	metadata	items	by	dragging	them	up	and
down	the	list.

4.2 Pressing	the	button

With	the	compile	options	all	set	it's	time	to	press	the	Compile	button. Suddenly	stuff	happens:

1. The Export dialogue	appears, asking	for	a	file	name	and	location. Give	it	what	it	wants	and	click
Export.

If	you've	compiled	the	document	before	Scrivener	will	offer	the	last	used	file	name	and	location,
then	ask	you	if	you	want	to	replace	it. Heck	yes	is	the	answer.

2. Scrivener	now	compiles	the	text. While	this	is	happening	the	progress	bar	at	bottom	left	fills
steadily	blue.

3. Now	MultiMarkdown	picks	up	the	compiled	text	(the	progress	bar	clears)	and	processes	it. While
this	is	happening	the	progress	bar	fills	with	blue	and	white	spiral.

4. The Export dialogue	retracts	and	we're	done.

Usually, compiling	goes	smoothly: mis-typed	links	and	fouled-up	syntax	tend	to	make	themselves
known	in	the	Latex	typesetting	or	weird	effects	in	the	finished	PDF.	Now	and	again	though	there	are
glitches: you'll	get	a	warning	dialogue	and	the	compile	fails. The	only	solution	is	to	go	back, try	and
fix	the	issue	then	try	again. What	little	advice	I have	to	give	is	in section 5.6.

4.3 Where'd	it	go?

The	next	challenge	is	finding	your	compiled	file. Exactly	where	it	turns	up	depends	on	whether	there
were	linked	images	or	not:

• if	there	were	no	linked	images	then	you'll	find	the	compiled	file	in	the	specified	directory, named
filename.tex.

CHAPTER	4. COMPILING (SCRIVENER AND MULTIMARKDOWN) 18

• if	there	were	linked	images	then	there	will	be	a	folder filename.tex, and	inside	that	will	be
the	exported	images	and	the	compiled	file, named filename.tex.

Chapter	5

Typesetting	(TexShop)

When	we	get	 to	TexShop	we	don't	compile	the	document	we typeset it. It's	a	mists	of	time	thing,
going	back	to	the	days	when	documents	were	typeset	and	not	tidied	up	into	PDFs. But	before	we	can
get	on	with	typesetting	we	have	to	know	a	little	bit	about	how	tex	files	are	structured.

5.1 A bit	about	Latex

Tex	files	consist	of	three	main	sections, a	beginning, a	middle	and	an	end. The	beginning	–	the	header
–	contains	the	general	instructions	for	page	layout	and	fonts, as	well	as	the	instructions	for	assembling
tables	of	 contents. The	 tex	files	produced	by	MultiMarkdown	don't	have	 that	header	 information
built	in; instead	it	is	supplied	at	the	point	of	typesetting	by	calls	to	other	documents. This	makes	it
comparatively	easy	to	customise	you	Latex	output1.
The	starting	point	for	our	the	Latex	header	data	is	the	tex	files	named	in	the	metadata	back	at	the

Scrivener	compile	dialogue. There	are	two	files:

• mmd-memoir-header.tex

• mmd-memoir-begin.tex

The	files	are	called	using	the	standard	Latex input{} command, which	means	the	Tex	engine	works
through	the	tex	file	until	it	gets	to	an input{} then	pulls	in	the	referenced	file	and	works	through	that,
then	jumps	back	to	the	main	file, and	so	on. So	for	this	document, the	first	few	lines	of	the	tex	file	are:

\input{mmd-memoir-header}
\def\mytitle{A toad's guide to …}
\def\myauthor{Huw Evans}
\def\latexmode{memoir}
\input{mmd-memoir-begin-doc}
\def\format{complete}
\chapter{Introduction}
\label{introduction}

We	can	 see	 the	calls	 to	 those	 two	files, as	well	 as	 the	outcome	of	 some	of	 the	other	metadata
attributes, such	as	the	title	and	author. We'll	have	to	look	at	the	insides	of	those	tex	files	a	little	later,
but	for	now, we	just	need	to	know	enough	to	get	the	document	typeset	the	first	time.

1If	your	need	for	customisation	goes	beyond	that	provided	by	the	tex	documents	you	can	revert	to	the	MMD 2	method	and
hack	about	with	XSLT files. But	this	is	where	I leave	you.

19

CHAPTER	5. TYPESETTING (TEXSHOP) 20

5.2 Setting	up	for	typesetting

There's	one	thing	we	have	to	do	to	get	things	ready	for	typesetting. We	have	to	make	sure	that	the	text
files	called	by	those input{} commands	are	sitting	in	the	same	folder	as	the	tex	document	itself.
Unfortunately, that	isn't	just	two	files, because	those	two	files	include	a	few input{} commands

themselves. We'll	be	picking	the	chain	apart	in	a	later	section, so	the	easiest	thing	when	you're	first
experimenting	with	ScML is	to	make	sure	all	the	files	which	came	as	part	of	the	MultiMarkdown	Latex
support	package	are	in	the	same	folder	as	your	tex	file. That	way	they have to	be	in	the	right	place.
With	 the	files	 in	 the	 right	place	you	can	 launch	TexShop	and	open	your	 tex	file. It'll	open	 in	a

dull-looking	window	with	a	toolbar	at	the	top. There's	a Typeset button	on	the	toolbar. Press	it.
TexShop	grinds	into	action. You'll	know	that	because	the Console window	opens	and	starts	to	fill

with stuff. What	you	want	to	see	at	this	point	is	that	the stuff keeps	scrolling	by	until	it	gets	to	a	point
where	it	says Output written on … and	a	new	window	opens	showing	your	new	PDF.
And	that's	it. Except	that	you'll	now	want	to	make	it	look	the	way	you	want	it	to	look	and	not	the

default	look. Which	means	we	need	to	come	back	to	those input{} calls	and	get	a	better	idea	of
what	is	going	on. We're	also	going	to	have	to	talk	about	packages.
Of	course, there's	always	the	possibility	that	your	typesetting	didn't	result	in	a	PDF and	the	Console

may	have	stalled, in	that	case, have	a	look	at section 5.6 for	a	few	hints.

5.3 Those	other	files

As	you'll	find	out	once	you	start	tinkering, the	chain	of input{} in	those	first	two	files	goes	like	this:

• mmd-memoir-header

– mmd-memoir-setup

* mmd-memoir-layout--8.5x11
* mmd-memoir-packages
* mmd-default-metadata

• mmd-memoir-begin-doc

– mmd-title

– mmd-memoir-copyright

Each	of	the	files	does	a	little	something	for	you, and	each	of	them	can	be	customised. For	example,
because	I use	A4	paper	 I've	replaced	the mmd-memoir-layout--8.5x11 with	my	own mmd-memoir-
layout-A4. I've	also	added	to	the	packages	listed	in mmd-memoir-packages to	call	up	the	ones	I want.
There	are	similar	chains	if	you	want	to	produce	stand	alone articles rather	than	the	longer	memoir.
One	of	the	benefits	of	having	the	chains, rather	than	two	big	files, is	that	you	can	link	to	them	from

different	starting	points, allowing	you	to	make	a	few	major	decisions	on	how	you	want	stuff	to	appear,
and	then	re-use	that	time	and	again. The	downside	is	that	you	can	get	tangled	(which	is	why	I wrote
out	those	lists	in	the	first	place).

5.4 Packages

From	here	on	in	it's	down	to	you	to	make	Latex	work	for	you. But	before	I finish	there	are	a	couple	of
points	to	make	on	customising. The	first	is	packages.
Packages	are	Latex's	way	of	bolting	additional	functionality	to	the	standard	set: they	are	the	go-faster

stripes	of	typesetting. If	you	come	across	things	you	can't	do	with	standard	Latex	there's	probably	a
package	which	will	let	you	do	it. Some	packages	handle	layouts, others	give	you	SI units	or	chemical

CHAPTER	5. TYPESETTING (TEXSHOP) 21

symbols. There	are	packages	for	most	things. The Tex	User	Group	archive2 is	a	good	place	to	start
looking, but	it's	worth	noting	that	many	of	the	packages	come	with	the	MacTex	distribution.

5.5 Other	choices

Latex	has	many	flavours. People	eventually	find	out	what	works	for	them. One	of	my	personal	pref-
erences	is	to	use	the Xetex/Xelatex3 derivative	for	typesetting. It's	accessible	as	one	of	the	options	in
TexShop. The	main	benefit	is	that	you	can	use	all	your	standard	OS X fonts, without	being	restricted
to	the	smaller	set	of	Latex	specific	fonts.

5.6 Compile	and	typeset	woes

The	basic	rule	for	happy	compiling	and	typesetting	is	to	compile	and	typeset	little	and	often. Do	not
wait	until	the	whole	hundred	and	fifty	thousand	word	epic	is	finished. Process	each	chapter	as	you
go. Sure, some	of	the	cross-references	will	fail	as	they	refer	to	sections	as	yet	unwritten	or	outside	the
current	compile	selection, but	you'll	catch	the	stupid	mistakes	early	and	fix	them.
Identifying	MultiMarkdown	compile	problems	is	a	pain, as	you	are	trying	to	find	a	mis-placed	bracket

or	caret	in	the	middle	of	all	your	text. The	best	approach	here	is	to	re-compile	with	progressively	fewer
documents	in	Scrivener, until	you	identify	the	one	which	is	causing	the	failure. Once	you	get	it	down
to	one	document	it's	then	relatively	easy	to	find	your	mistake: even	if	you	end	up	with	the	extreme
solution	of	taking	out	all	the	MultiMarkdown	and	starting	again.
Finding	Latex	typesetting	problems	is	a	different	issue. The	console	will	flag	up	errors	as	it	goes:

• layout	problems	like	over-full	boxes	or	missing	references	will	appear	as	warnings	but	typesetting
will	carry	on.

• issues	like	missing	images	or	incorrect	maths	layout	will	stall	the	typesetting, but	a	few	returns
in	the	console	will	re-start	the	process. This	is	often	down	to	a [instead	of	a { (or	the	other	way
round)	or	a	missing	curly	brace	in	maths	or	SI units.

• some	errors	are	severe	enough	to	bring	the	whole	process	to	a	juddering	halt.

For	the	first	two	cases	you	can	go	back	to	the	console	after	typesetting	has	finished	and	look	at	the
reporting	line	numbers	to	find	and	solve	the	problem. For	the	third, it	may	be	an	unfinished	maths
expression	has	produced	an	unresolvable	horror: those	are	hardest	problems	to	track, but	often, solving
earlier	errors	resolves	later	ones. Again, little	and	often	is	the	rule	for	avoiding	huge, untraceable	issues.
The	final	set	of	issues	only	appear	when	you	go	through	the	PDF and	find	that	things	don't	look

right. Once	again, I find	it's	maths	expressions	give	the	most	problem, followed	by	tables	and	links.
And	usually	it's	my	fault	for	missing	off	a ! or	not	putting	the	head-body	divider	line	in	a	table, or
misspelling	a	cross-reference. You	need	to	go	through	the	document	with	the	Scrivener	project	open,
working	between	the	preview, the	tex	document	and	Scrivener. Often	I'll	find	the	mistake	in	the	pdf
or	console, test	a	fix	in	the	tex	document, then	carry	that	change	back	to	Scrivener.
At	the	risk	of	being	boring, little	and	often. And	the	more	complex	it	is, the	littler	and	the	oftener.

We	have	to	accept	that	compiling	is	not	a	once-and-for-all	process, but	an	iterative	one	which	gives	a
better	and	better	document.

2http://www.tug.org/ctan.html
3http://tug.org/xetex/

http://www.tug.org/ctan.html
http://tug.org/xetex/
http://www.tug.org/ctan.html
http://tug.org/xetex/

Chapter	6

Extras

I have	mentioned	one	or	two	other	tools	which	I use	around	this	workflow, but	this	is	the	consolidated
list. Beyond	buying	their	software, I have	no	financial	connection	with	the	developers	or	distributors
of	these	programs.

• MultiMarkdown	Composer: a	stand-alone	editor	for	MultiMarkdown	which	is	useful	for	testing
tricky	bits	of	code. It	comes	from	the	creator	of	MultiMarkdown, Fletcher	Penney. £6.99	through
the	App	Store.

• QuickCursor: a	handy	bolt	on	which	quickly	copies	text	from	the	open	application	into	a	chosen
application, useful	 for	working	between	Scrivener	and	MultiMarkdown	Composer. Hog	Bay
Software. £2.99	through	the	App	Store.

• MathType: a	visual	equation	editor	which	can	produce	Latex	code	for	pasting	into	Scrivener.
Design	Science1. $99	from	their	web	store.

• yEd: I've	just	found	this	one. A flow-chart	creator	from yworks 2. And	it's	free.

• pdfsam: PDF splitter	and	merger. When	 I need	 to	break	a	PDF up	 into	chapters, usually	 to
accompany	distance-learning	modules, this	does	the	job. You	can	split	at	page	or	bookmark
level, making	it	easy	to	slice	a	PDF into	chapters. PDFsam.org3. Also	free.

1http://www.dessci.com/en/
2ttp://www.yworks.com/en/products_yed_about.html
3http://www.pdfsam.org/

22

http://www.dessci.com/en/
ttp://www.yworks.com/en/products_yed_about.html
http://www.pdfsam.org/
http://www.dessci.com/en/
ttp://www.yworks.com/en/products_yed_about.html
http://www.pdfsam.org/

	Contents
	To begin
	Acknowledgements
	Why would you?
	An overview of the ScML workflow.

	Setting things up
	Scrivener
	MultiMarkdown
	Latex

	Writing (Scrivener)
	The small stuff
	Document structure
	Cross-references
	Links
	Footnotes
	Tables
	Images or figures
	Maths
	Bits of Latex
	Something's missing
	Making life easier

	Compiling (Scrivener and MultiMarkdown)
	Compile options
	Pressing the button
	Where'd it go?

	Typesetting (TexShop)
	A bit about Latex
	Setting up for typesetting
	Those other files
	Packages
	Other choices
	Compile and typeset woes

	Extras

